Движение по окружности

Движение тела по окружности является частным случаем криволинейного движения. Наряду с вектором перемещения  удобно рассматривать угловое перемещение Δφ (или угол поворота), измеряемое в радианах (рис. 1.6.1). Длина дуги связана с углом поворота соотношением

При малых углах поворота Δl ≈ Δs.

Рисунок 1.6.1.

Линейное  и угловое Δφ перемещения при движении тела по окружности

Угловой скоростью ω тела в данной точке круговой траектории называют предел (при Δt→0) отношения малого углового перемещения Δφ к малому промежутку времени Δt:

Угловая скорость измеряется в рад/с.

Связь между модулем линейной скорости υ и угловой скоростью ω:

При равномерном движении тела по окружности величины υ и ω остаются неизменными. В этом случае при движении изменяется только направление вектора

Равномерное движение тела по окружности является движением с ускорением. Ускорение

направлено по радиусу к центру окружности. Его называют нормальным или центростремительным ускорением. Модуль центростремительного ускорения связан с линейной υ и угловой ω скоростями соотношениями:

Для доказательства этого выражения рассмотрим изменение вектора скорости   за малый промежуток времени Δt. По определению ускорения

Рисунок 1.6.2.

Центростремительное ускорение тела  при равномерном движении по окружности

Векторы скоростей  и  в точках A и B направлены по касательным к окружности в этих точках. Модули скоростей одинаковы υA =υB = υ.

Из подобия треугольников OAB и BCD (рис. 1.6.2) следует:

При малых значениях угла Δφ = ωΔt расстояние |AB| =Δs ≈ υΔt. Так как |OA| = R и |CD| = Δυ, из подобия треугольников на рис. 1.6.2 получаем:

При малых углах Δφ направление вектора  приближается к направлению на центр окружности. Следовательно, переходя к пределу при Δt→0,  получаем:

При изменении положения тела на окружности изменяется направление на центр окружности. При равномерном движении тела по окружности модуль ускорения остается неизменным, но направление вектора ускорения изменяется со временем. Вектор ускорения в любой точке окружности направлен к ее центру. Поэтому ускорение при равномерном движении тела по окружности называется центростремительным.

В векторной форме центростремительное ускорение может быть записано в виде

где  – радиус-вектор точки на окружности, начало которого находится в ее центре.

Если тело движется по окружности неравномерно, то появляется также касательная (или тангенциальная) составляющая ускорения (см 1.1):

В этой формуле Δυτ = υ2 – υ1 – изменение модуля скорости за промежуток времени Δt.

Направление вектора полного ускорения  определяется в каждой точке круговой траектории величинами нормального и касательного ускорений (рис. 1.6.3).

Рисунок 1.6.3.

Составляющие ускорения  и   при неравномерном движении тела по окружности

Движение тела по окружности можно описывать с помощью двух координат x и y (плоское движение). Скорость тела в каждый момент можно разложить на две составляющие υx и υy (рис. 1.6.4).

При равномерном вращении тела величины x, y, υx, υy будут периодически изменяться во времени по гармоническому закону с периодом

Рисунок 1.6.4.

Разложение вектора скорости   по координатным осям

Еще статьи в этой категории: